Exercise 9.4.2

Show that the Helmholtz equation,

$$
\nabla^{2} \psi+k^{2} \psi=0
$$

is still separable in circular cylindrical coordinates if k^{2} is generalized to $k^{2}+f(\rho)+\left(1 / \rho^{2}\right) g(\varphi)+h(z)$.

Solution

Replace k^{2} with $k^{2}+f(\rho)+\left(1 / \rho^{2}\right) g(\varphi)+h(z)$ in the Helmholtz equation.

$$
\nabla^{2} \psi+\left[k^{2}+f(\rho)+\frac{1}{\rho^{2}} g(\varphi)+h(z)\right] \psi=0
$$

Expand the Laplacian operator in circular cylindrical coordinates (ρ, φ, z).

$$
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \varphi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\left[k^{2}+f(\rho)+\frac{1}{\rho^{2}} g(\varphi)+h(z)\right] \psi=0
$$

Assume a product solution of the form $\psi(\rho, \varphi, z)=P(\rho) \Phi(\varphi) Z(z)$ and substitute it into the PDE.

$$
\begin{aligned}
& \frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial}{\partial \rho}[P(\rho) \Phi(\varphi) Z(z)]\right]+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}[P(\rho) \Phi(\varphi) Z(z)]+\frac{\partial^{2}}{\partial z^{2}}[P(\rho) \Phi(\varphi) Z(z)] \\
&+\left[k^{2}+f(\rho)+\frac{1}{\rho^{2}} g(\varphi)+h(z)\right] P(\rho) \Phi(\varphi) Z(z)=0 \\
& \frac{\Phi(\varphi) Z(z)}{\rho} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)+\frac{P(\rho) Z(z)}{\rho^{2}} \Phi^{\prime \prime}(\varphi)+ P(\rho) \Phi(\varphi) Z^{\prime \prime}(z) \\
&+\left[k^{2}+f(\rho)+\frac{1}{\rho^{2}} g(\varphi)+h(z)\right] P(\rho) \Phi(\varphi) Z(z)=0
\end{aligned}
$$

Divide both sides by $P(\rho) \Phi(\varphi) Z(z)$.

$$
\begin{aligned}
& \frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)+\frac{1}{\rho^{2}} \frac{\Phi^{\prime \prime}}{\Phi}+\frac{Z^{\prime \prime}}{Z}+k^{2}+f(\rho)+\frac{1}{\rho^{2}} g(\varphi)+h(z)=0 \\
& \frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)+f(\rho)+\frac{1}{\rho^{2}}\left[\frac{\Phi^{\prime \prime}}{\Phi}+g(\varphi)\right]+\frac{Z^{\prime \prime}}{Z}+h(z)+k^{2}=0
\end{aligned}
$$

Bring the first three terms over to the right side.

$$
\underbrace{\frac{Z^{\prime \prime}}{Z}+h(z)+k^{2}}_{\text {function of } z}=\underbrace{-\frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)-f(\rho)-\frac{1}{\rho^{2}}\left[\frac{\Phi^{\prime \prime}}{\Phi}+g(\varphi)\right]}_{\text {function of } \rho \text { and } \varphi}
$$

The only way a function of z can be equal to a function of ρ and φ is if both are equal to a constant λ.

$$
\frac{Z^{\prime \prime}}{Z}+h(z)+k^{2}=-\frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)-f(\rho)-\frac{1}{\rho^{2}}\left[\frac{\Phi^{\prime \prime}}{\Phi}+g(\varphi)\right]=\lambda
$$

The second equation is

$$
-\frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)-f(\rho)-\frac{1}{\rho^{2}}\left[\frac{\Phi^{\prime \prime}}{\Phi}+g(\varphi)\right]=\lambda .
$$

Bring the third term to the right side and bring λ to the left side.

$$
-\frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)-f(\rho)-\lambda=\frac{1}{\rho^{2}}\left[\frac{\Phi^{\prime \prime}}{\Phi}+g(\varphi)\right]
$$

Multiply both sides by $-\rho^{2}$.

$$
\underbrace{\frac{\rho}{P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)+\rho^{2}[f(\rho)+\lambda]}_{\text {function of } \rho}=\underbrace{-\left[\frac{\Phi^{\prime \prime}}{\Phi}+g(\varphi)\right]}_{\text {function of } \varphi}
$$

The only way a function of ρ can be equal to a function of φ is if both are equal to another constant μ.

$$
\frac{\rho}{P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)+\rho^{2}[f(\rho)+\lambda]=-\left[\frac{\Phi^{\prime \prime}}{\Phi}+g(\varphi)\right]=\mu
$$

In summary, as a result of assuming a product solution, the Helmholtz equation in circular cylindrical coordinates has reduced to three ODEs - one in ρ, one in φ, and one in z.

$$
\left.\begin{array}{rl}
\frac{\rho}{P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)+\rho^{2}[f(\rho)+\lambda] & =\mu \\
-\left[\frac{\Phi^{\prime \prime}}{\Phi}+g(\varphi)\right] & =\mu \\
\frac{Z^{\prime \prime}}{Z}+h(z)+k^{2} & =\lambda
\end{array}\right\}
$$

Therefore, the Helmholtz equation is still separable in circular cylindrical coordinates if k^{2} is generalized to $k^{2}+f(\rho)+\left(1 / \rho^{2}\right) g(\varphi)+h(z)$.

